
July 2013 FoxRockX Page 17

VFP: Ideal for Tools, Part 1
VFP has an extensive set of language elements that make it easy to build developer tools.
This article explores data-related language that helps in tool-building.

Tamar E. Granor, Ph.D.

In my last few articles, I focused on Thor, a VFPX
tool for managing developer tools. Thor and VFPX
generally are part of a long history of developer
tools for FoxPro written in FoxPro. In this series
of articles, I’ll look at the language elements that
enable writing developer tools.
When FoxPro 2.0 shipped in 1991, it included two
new tools written in FoxPro’s programming lan-
guage: GenScrn and GenMenu, which translated
screen designs and menu designs, respectively, into
FoxPro code. While these may not have been the
first developer tools written in FoxPro, they mark
a turning point because they were an essential part
of developing FoxPro applications and because the
programming language was extended to make it
possible to write them. After that, every version
of FoxPro and Visual FoxPro included multiple
tools written in FoxPro, and included commands,
functions or other capabilities added specifically to
make tool-writing easier. Since then, also, the Fox-
Pro community has created hundreds (perhaps,
thousands) of tools written in FoxPro to manipu-
late FoxPro.

Starting in VFP 6, the source code for all the
tools written in the FoxPro language that come with
VFP has been included with the product (in Tools\
XSource\XSource.ZIP). VFP 9 includes more than
20 so-called “Xbase tools,“ from the Class Browser
to the three reporting applications that help extend
the Report Designer. All this source code both
enables the VFP community to modify and extend
the existing tools, and to see how particular things
were done. (In fact, the Xbase tools are now part
of VFPX, so that extensions can be managed and
distributed.)

The set of language capabilities that enable tool
creation is extensive. In this series of articles, I’ll
look at those capabilities, grouped by what kind of
thing they manipulate. To demonstrate them, I’ll
look at code from a number of different VFP tools.
Most of the code shown in these articles was writ-
ten by people other than me. (Note also that much
of the code has been reformatted to fit this maga-
zine.)

The Array functions
There are a large number of functions in VFP that
collect information and put the results into an array.
Before actually exploring any specific tool-building
language features, let’s take a quick look at what all
these array functions have in common.

First, all of them have names beginning with the
letter “A,“ such as AFIELDS() or AVCXClasses().

Second, each expects an array as the first
 parameter. The information collected by the func-
tion is put into the array, which is created, if neces-
sary, and redimensioned as needed.

Finally, these functions almost all return the
number of rows in the resulting array.

For more information on the array functions or
on array-handling in general in VFP, see the white
paper “You Need Arrays,“ available on my website
at
http://www.tomorrowssolutionsllc.com/Confere
nce%20Sessions/You%20Need%20Arrays.pdf.

Digging into Data
The big thing that sets VFP apart from convention-
al programming languages is its native database
 engine. Not surprisingly, there are a whole slew of
functions that let you explore databases and tables
and find out which are currently in use.

Even if you’re working with a SQL database,
VFP includes functions to help you understand the
available data structures.

Determining VFP table structures
FoxPro has had the ability to determine the fields in
a table from early days. The AFields() function first
appeared in FoxPro 2.0; it puts the structure of a
table into an array with one row for each field. The
content of the array has expanded over the years, as
tables gained new capabilities. In VFP 9, the result-
ing array has 18 columns, though only the first six
are relevant for free tables. The function returns the
number of fields in the table.

FoxRockX 33.indd 17 14.08.2013 16:04:14

Page 18 FoxRockX July 2013

The syntax for AFields() is shown in Listing
1. Listing 2 shows most of the code from the Thor
tool, Create SQL from cursor. It uses AFields() to
get a list of the fields in the specified cursor and
then loops through the resulting array, building
a CREATE CURSOR statement. The result of this
code, applied to the Northwind Products table, is
shown in Listing 3.

Listing 1. AFields() fills an array with information about the
fields in a table. It can work on the current workarea or a speci-
fied alias or workarea.
nFields = AFIELDS(ArrayName
 [, cAlias | nWorkarea])

Listing 2. This code, drawn from the Thor tool Create SQL
from cursor, shows a fairly typical use of AFields().
lnFields = afields(laFields)
lcSQL = ''
for lnI = 1 to lnFields
 lcType = laFields[lnI, 2]
 lcSQL = lcSQL + ;
 iif(empty(lcSQL), 'create cursor TEMP ;' ;
 + ccCR + '(', ', ;' + ccCR) + ;
 laFields[lnI, 1] + ' ' + lcType
 do case
 case lcType $ 'CVQ'
 lcSQL = lcSQL + '(' + ;
 transform(laFields[lnI, 3]) + ')'
 case lcType $ 'NF'
 lcSQL = lcSQL + '(' + ;
 transform(laFields[lnI, 3]) + ',' + ;
 transform(laFields[lnI, 4]) + ')'
 case lcType = 'B'
 lcSQL = lcSQL + '(' + ;
 transform(laFields[lnI, 4]) + ')'
 endcase
next lnI

Listing 3. The result produced by the Thor tool Create SQL
from cursor, applied to the Northwind Products table.
create cursor TEMP ;
 (PRODUCTID I, ;
 PRODUCTNAME C(40), ;
 SUPPLIERID I, ;
 CATEGORYID I, ;
 QUANTITYPERUNIT C(20), ;
 UNITPRICE Y, ;
 UNITSINSTOCK I, ;
 UNITSONORDER I, ;
 REORDERLEVEL I, ;
 DISCONTINUED L)

The other key thing we may want to know
about a table is what indexes it has. Although this
information has been available since early FoxPro
days, collecting it got a lot easier in VFP 7 with the
addition of the ATagInfo() function. As its name

implies, this function puts information about index
tags into an array. The resulting array has one row
for each tag and six columns indicating the name,
type, key, filter, order and collate sequence for the
tag. The function returns the number of tags; its
syntax is shown in Listing 4.

Listing 4. ATagInfo() fills an array with information about index
tags.
nTags = ATAGINFO(ArrayName [, cIndexName
 [, cAlias | nWorkarea])

Note that the second parameter to ATagInfo() is
the name of an index file. This allows you to collect
information on a subset of a table’s indexes, in the
odd case where they’re not all in the table’s struc-
tural index (CDX). While you’re unlikely to use that
parameter, you need to be aware of it when you
want to specify the alias or workarea of the table.
To skip over the cIndexName parameter, pass the
empty string, as in Listing 5.

Listing 5. To specify the alias or workarea for ATagInfo(), you
must pass something for the cIndexName parameter. Pass the
empty string to include all tags in the result.
nTags = ATAGINFO(aTags, '', 'MyAlias')

Listing 6 shows a block of code from the Thor
Schema tool. This section shown creates the list of
indexes for the schema. That portion of the output,
for the Northwind Products table, is shown in Fig-
ure 1.

Listing 6. This block of code, from Thor’s Schema tool, uses
ATagInfo() to collect the list of tags for the table. It then loops
through and produces output describing each.
If Not This.lView
 Dimension aTags[1]
 iTags = Ataginfo(aTags)
 If iTags = 0
 \ No Structural Index Tags
 Else
 \ <h4>Indexes:</h4><table>

 \ <table id='tblIndices'><tr><th>Tag
Name</th> <th>Type</th> <th>Expression</th>
<th>Filter</th> <th>Order</th> <th>
Collation</th></tr>
 For X = 1 To iTags
 \<tr>
 For Y = 1 To 6
 \ <td> <<aTags[X,Y]>> </td>
 Next
 \</tr>
 Next
 Endif
 \</table>
Endif

Figure 1. The tag section of the output from Thor’s Schema tool, applied to the Northwind Products table.

FoxRockX 33.indd 18 14.08.2013 16:04:15

July 2013 FoxRockX Page 19

name of the property you’re interested in, and the
function returns the value of that property. You can
ask about anything from the default value of a field
to the primary key of a table to the SQL that defines
a view. Listing 9 shows the syntax for the function.

Listing 9. DBGetProp() lets you explore the properties of a
database and its contents.
uPropertyValue = DBGetProp(cItem, cItemType,
 cProperty)

The possible values for cItemType are: “CON-
NECTION“, “DATABASE“, “FIELD“, “TABLE“,
and “VIEW“. The list of values you can pass for
cProperty varies with the item type. There’s a com-
plete list of properties in the Help topic “DBGET-
PROP() Function.“

Listing 10 shows a small block of code found
in the DoSearch method of the RefSearchDatabase
class of Code References. It uses ADBObjects() and
DBGetProp() to add the tables in a database to the
list of places to search.

Listing 10. This method inside Code References adds the list
of tables in a database to the list of places to be searched.
* Add tables in DBC to search list
m.nCnt = ADBOBJECTS(aDBList, "TABLE")
FOR m.i = 1 TO m.nCnt
 TRY
 m.cTableName = DBGETPROP(aDBList[m.i], ;
 "TABLE", "PATH")
 THIS.AddFileToSearch(;
 FULLPATH(m.cTableName, ;
 ADDBS(THIS.Folder)))
 CATCH
 * ignore error (we might possibly get
 * one on DBGETPROP)
 ENDTRY
ENDFOR

DBGetProp() has a sibling, DBSetProp(), that
lets you set properties of the items in a database. It’s
handy for tools that manage databases. The syntax,
shown in Listing 11, is similar to DBGetProp()’s,
but there’s a fourth parameter to provide the new
value of the specified property.

Listing 11. DBSetProp() lets you change the properties of an
object in a database.
lSuccess = DBSETPROP(cItem, cItemType,
 cProperty, uNewValue)

Be aware that some properties of database
objects can’t be changed by DBSetProp(); the list of
properties in Help indicates, for each, whether it’s
read-only or read-write. Those that can’t be changed

by DBSetProp() generally have another
command to set them. For example,
the SQL property of a view is set by the
CREATE SQL VIEW command.

Listing 12 is drawn from the
DoReplace method of the RefSearchDa-
tabase class of Code References. It uses
DBSetProp() to change the Comment for
a database.

Exploring VFP database
structures
VFP also includes commands that let you discover
the structure of a database, including what tables,
views and connections it contains, and the details
of those items. The ADBObjects() function is a one-
stop shop for finding out what’s in a database,
while the DBGetProp() function lets you look up
the details of database contents.

ADBObjects() fills an array with a list of one
kind of thing in a database. You pass a parameter
 indicating whether you’re interested in tables, views,
connections or relations. Listing 7 shows the syntax;
cInfoType is one of this list: “TABLE“, “VIEW“,
“CONNECTION“, “RELATION“. For everything
other than relations, the array created has a single
column with the names of the specified objects. For
relations, the function creates a five-column array
providing the names of the tables involved, the tags
used to create the relation, and a string indicating
whether there are any relational integrity constraints
based on this relation.

Listing 7. Use ADBObjects() to explore database contents.
nItemCount = ADBObjects(ArrayName, cInfoType)

ADBObjects() is also used in the Thor Schema
tool, to collect information about the relations in
the database. Listing 8 shows that part of the code,
while Figure 2 shows that section in the output for
the Northwind Products table.

Listing 8. This block of code from Thor’s Schema tool reports
on relationships in the database.
iDbObjects = Adbobjects(aDb,"RELATION")
If Ascan(aDb,Upper(This.cAlias))>0
\ <h4>Relations:</h4><table>
\ <tr><th>Parent Table</th><th>Parent
Tag</th><th>Child Table</th><th>Child
Tag</th></tr>
 For X = 1 To iDbObjects
 If aDb[X,1]=Upper(This.cAlias) Or
aDb[X,2]=Upper(This.cAlias)
\<tr> <td> <<aDb[X,2]>> </td><td><<aDb[X,4]>>
</td><td><<aDb[X,1]>> </td><td><<aDb[X,3]>>
</td></tr>
 Endif
 Next
Endif

DBGetProp() lets you find the value of a specific
characteristic of an object in a database. You pass
the name of the object, the type of object, and the

Figure 2. Thor’s Schema tool uses ADBObjects() to collect information about rela-
tions involving the specified table.

FoxRockX 33.indd 19 14.08.2013 16:04:15

Page 20 FoxRockX July 2013

the server. Listing 15 shows the syntax for the func-
tion. Like SQLTables(), the return value can be 1, 0
or a negative value.

Lis ting 15. SQLColumns() can retrieve fi eld information in the
standard VFP format or the server’s format.
nSuccess = SQLColumns(nHandle, cTable
 [, cFormat
 [, cResultCursor]])

The CursorAdapter Builder uses SQLColumns()
to collect the data for the mover in Figure 3. The
code is shown in Listing 16.

Lis ting 16. This code, from the GetFieldsForTable method of
the CursorAdapter Builder’s SelectCommandBuilderForm, col-
lects the list of fi elds used in the two-column mover in Figure 3.
case vartype(.uConnection) = 'N'
 * If we're using an ODBC connection handle,
 * use SQLCOLUMNS to get the fi elds.
 * If it fails the fi rst time, try again
 * because sometimes it fails immediately
 * after using SQLCOLUMNS().
 sqlcolumns(.uConnection, lcTable, ;
 'NATIVE', '_Fields')
 if not used('_Fields')
 sqlcolumns(.uConnection, lcTable, ;
 'NATIVE', '_Fields')
 endif not used('_Fields')
 if used('_Fields')
 scan
 lcField = trim(COLUMN_NAME)
 lcField = ;
 GetObjectName(trim(COLUMN_NAME))
 lnFields = lnFields + 1
 dimension laFields[lnFields]
 laFields[lnFields] = lcTable + '.' + ;
 lcField
 endscan
 use in _Fields
endif used('_Fields')

Determining what’s in use
Several functions let you fi nd out what databases
and tables are open and what data sessions are in
use. These are useful in several ways:

• Allowing you to save and restore the
data set-up, if you need to change it in
a tool;

• Letting you fi gure out what to operate
on;

• Reporting the data set-up in an error
handler.

ASessions() fi lls an array with a list of data
sessions in use. It takes an array as its only
 parameter; the array comes back with a single
column, listing the data session numbers in
use. You might think this function is unnec-
essary, but it is possible for the data sessions
in use to have non-sequential numbers. Sup-
pose you open three forms, each with a private
data session. At that point, you’d have data
sessions 1 through 4 in use (1 is the default,
shared, data session). If you then close the fi rst
form you opened, data session 2 is no longer is
use; you have data sessions 1, 3 and 4.

Li sting 12. Use DBSetProp() to set those properties of data-
base objects that aren’t handled by other, more specifi c, com-
mands.
DBSETPROP(JUSTSTEM(THIS.Filename), ;
 "DATABASE", "Comment", cNewText)

Exploring SQL database structures
VFP also includes some functions that let you
 explore the structure of a SQL database. What’s
particularly nice about these functions is that they
work for pretty much any SQL database, and the
results are structured the same way no matter
which back-end you’re talking to. Both of these
functions require that you’ve already connected to
the database, as they expect the handle as the fi rst
parameter.

SQLTables() returns a list of tables in the
database. You can optionally limit the result to just
tables, just views or just system tables. The syntax
for SQLTables() is shown in Listing 13. The function
returns 1 if it’s done, 0 if it’s still executing (only
possible if you’re executing it asynchronously), or a
negative value if an error occurred.

Li sting 13. SQLTables() fi lls a cursor with the list of tables in a
SQL database.
nSuccess = SQLTables(nHandle [, cTableType
 [, cResultCursor]])

The CursorAdapter Builder uses SQLTables()
to populate a combobox with the list of tables when
you specify an ODBC data source. Figure 3 shows
the relevant form and Listing 14 shows the code for
that case.

Lis ting 14. This code, from the GetTables method of the
SelectCommandBuilderForm, populates a combo on the form
with the list of tables in the remote database.
case vartype(.uConnection) = 'N'
 sqltables(.uConnection, 'TABLE', '_Tables')
 scan for upper(TABLE_NAME) <> 'DTPROPERTIES'
 lcTable = trim(TABLE_NAME)
 .AddTableToList(lcTable, lcTable)
 endscan
 use in _Tables

SQLColumns() retrieves a list of the columns in
a table. You can choose whether to format the list in
the customary VFP way or in the format native to

Fig ure 3. This form from the CursorAdapter Builder uses SQLTables() and
SQLColumns() to retrieve data about an ODBC data source.

FoxRockX 33.indd 20 14.08.2013 16:04:15

July 2013 FoxRockX Page 21

 DBF(m.nWorkArea)
 aDBFList[ALEN(aDBFList,1),2] = ;
 ALIAS(m.nWorkArea)
 OTHERWISE
 * Need to determine if its a Table, Local
 * View or Remote View
 * Add to DBC tables list
 IF !THIS.AllowViews AND ;
 CURSORGETPROP("sourcetype",m.nWorkArea)#3
 LOOP
 ENDIF
 IF !EMPTY(aDBCList[1])
 DIMENSION aDBCList[ALEN(aDBCList,1)+1,2]
 ENDIF
 IF CURSORGETPROP("sourcetype", ;
 m.nWorkArea)#3 &&handle view here
 aDBCList[ALEN(aDBCList,1),1] = ;
 UPPER(CURSORGETPROP("sourcename", ;
 m.nWorkArea))
 ELSE
 aDBCList[ALEN(aDBCList,1),1] = ;
 DBF(m.nWorkArea)
 ENDIF
 aDBCList[ALEN(aDBCList,1),2] = ;
 ALIAS(m.nWorkArea)
 ENDCASE
ENDFOR

More to come
In my next article, I’ll look at commands and func-
tions that let you explore and work with classes
and forms. The final article in this series will look
at language elements that operate on code and on
projects.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
 Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of nearly
a dozen books including the award winning Hacker’s
Guide to Visual FoxPro, Microsoft Office Automation
with Visual FoxPro and Taming Visual FoxPro’s SQL.
Her latest collaboration is VFPX: Open Source Trea-
sure for the VFP Developer. Her books are available
from Hentzenwerke Publishing (www.hentzenwerke.
com). Tamar was a Microsoft Support Most Valuable
Professional from the program's inception in 1993
until 2011. She is one of the organizers of the annual
Southwest Fox conference. In 2007, Tamar received
the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

ADatabases() fills an array with the list of open
databases. It, too, takes a single parameter, the
array name. The resulting array has two columns;
the first tells you the name (just the filestem) of the
database, while the second contains the path to the
DBF.

AUsed() fills an array with a list of tables in use
in the current or a specified data session; its syntax
is shown in Listing 17. As you’d expect, omitting
the second parameter applies the function to the
current data session.

Listing 17. Call AUsed() to find out what tables are open in a
particular data session.
nTables = AUSED(ArrayName [, nDataSession])

The code in Listing 18 demonstrates both
ADatabases() and AUsed(). It’s part of the code to
populate the combo and listboxes in the _tablemover
class of the FFC (FoxPro Foundation Classes).

Listing 18. This code, from the InitData method of the _Table-
Mover class, adds open databases to a combo box, and adds
open tables to the list of tables.
m.nDBCCount=ADATABASES(aDBC)
FOR i = 1 TO m.nDBCCount
 * Add bar for popup
 IF m.i = 1
 THIS.cboData.AddItem("\-")
 ENDIF
 THIS.cboData.AddItem(aDBC[m.i,1])
ENDFOR

* Go thru workareas and see which tables open
m.nTotWorkAreas = AUSED(aWorkAreas)
FOR m.nCount = 1 TO m.nTotWorkAreas
 m.nWorkArea = aWorkAreas[m.nCount,2]

 * Avoid specific tables used by wizard and
 * not in a DBC
 DO CASE
 CASE ASCAN(aSkipTables,DBF(m.nWorkArea))#0
 LOOP
 CASE ISREADONLY(m.nWorkArea) AND ;
 !THIS.AllowReadOnly
 * skip for read-only tables and queries
 LOOP
 CASE EMPTY(THIS.GetDBCName(m.nWorkArea))
 * Add to free tables list
 IF ATC(".TMP",DBF(m.nWorkArea))#0 AND ;
 !THIS.AllowQuery
 LOOP
 ENDIF
 IF !EMPTY(aDBFList[1])
 DIMENSION aDBFList[ALEN(aDBFList,1)+1,2]
 ENDIF
 aDBFList[ALEN(aDBFList,1),1] = ;

DOWNLOAD
Subscribers can download FR201307_code.zip in the SourceCode sub directory of the document
portal. It contains the following files:
rickschummer201307_code.zip
Source code for the article “Application Updater” from Rick Schummer

FoxRockX 33.indd 21 14.08.2013 16:04:15

